Random integrals and correctors in homogenization
نویسندگان
چکیده
This paper concerns the homogenization of a one-dimensional elliptic equation with oscillatory random coefficients. It is well-known that the random solution to the elliptic equation converges to the solution of an effective medium elliptic equation in the limit of a vanishing correlation length in the random medium. It is also well-known that the corrector to homogenization, i.e., the difference between the random solution and the homogenized solution, converges in distribution to a Gaussian process when the correlations in the random medium are sufficiently short-range. Moreover, the limiting process may be written as a stochastic integral with respect to standard Brownian motion. We generalize the result to a large class of processes with long-range correlations. In this setting, the corrector also converges to a Gaussian random process, which has an interpretation as a stochastic integral with respect to fractional Brownian motion. Moreover, we show that the longer the range of the correlations, the larger is the amplitude of the corrector. Derivations are based on a careful analysis of random oscillatory integrals of processes with long-range correlations. We also make use of the explicit expressions for the solutions to the one-dimensional elliptic equation.
منابع مشابه
High Order Correctors and Two-scale Expansions in Stochastic Homogenization
In this paper, we study high order correctors in stochastic homogenization. We consider elliptic equations in divergence form on Zd, with the random coefficients constructed from i.i.d. random variables. We prove moment bounds on the high order correctors and their gradients under dimensional constraints. It implies the existence of stationary correctors and stationary gradients in high dimensi...
متن کاملNumerical Homogenization and Correctors
In this paper we consider numerical homogenization and correctors for nonlinear elliptic equations. The numerical correctors are constructed for operators with homogeneous random coefficients. The construction employs two scales, one a physical scale and the other a numerical scale. A numerical homogenization technique is proposed and analyzed. This procedure is developed within finite element ...
متن کاملHomogenization and Corrector Theory for Linear Transport in Random Media
We consider the theory of correctors to homogenization in stationary transport equations with rapidly oscillating, random coefficients. Let ε 1 be the ratio of the correlation length in the random medium to the overall distance of propagation. As ε ↓ 0, we show that the heterogeneous transport solution is well-approximated by a homogeneous transport solution. We then show that the rescaled corr...
متن کاملCorrectors for the Homogenization of Monotone Parabolic Operators
In the homogenization of monotone parabolic partial differential equations with oscillations in both the space and time variables the gradients converges only weakly in L p. In the present paper we construct a family of correctors, such that, up to a remainder which converges to zero strongly in L p , we obtain strong convergence of the gradients in L p .
متن کاملLiouville Principles and a Large-Scale Regularity Theory for Random Elliptic Operators on the Half-Space
We consider the large-scale regularity of solutions to second-order linear elliptic equations with random coefficient fields. In contrast to previous works on regularity theory for random elliptic operators, our interest is in the regularity at the boundary: We consider problems posed on the halfspace with homogeneous Dirichlet boundary conditions and derive an associated C1,α-type large-scale ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asymptotic Analysis
دوره 59 شماره
صفحات -
تاریخ انتشار 2008